antwoorden

Onderstaand overzicht volgt de nummering en de opgaven van de derde editie.
[antwoorden eerste editie | antwoorden tweede editie]

1

Dit is een rechtstreekse toepassing van de definities en verwante hoeken, zie figuur 4.5 en paragraaf 4.2.1 en 4.2.2.

2
a. $-\frac{\sqrt{2}}{2}$ c. $\frac{\sqrt{3}}{2}$ e. $2$ g. $-2$
b. $-\frac{\sqrt{3}}{2}$ d. $\frac{1+\sqrt{3}}{2\sqrt{2}}$ f. $\frac{1}{\sqrt{3}}$ h. $2+\sqrt{3}$


3

We geven enkel de overige goniometrische getallen.

a. $\cos\alpha = -\frac{2\sqrt{2}}{3} \quad,\quad \tan\alpha = -\frac{\sqrt{2}}{4}$
b. $\sin\alpha = -\frac{\sqrt{15}}{4} \quad,\quad \tan\alpha = \sqrt{15}$
c. $\cos\alpha = \frac{3}{5} \quad,\quad \sin\alpha = -\frac{4}{5}$


4
a. Fout: de hoek ligt in het tweede kwadrant
b. Fout: $\frac{5\pi}{4}$ kan ook, net zoals elk geheel veelvoud van $2\pi$ bij deze hoeken.


5
a. $\sin\alpha = \frac{\sqrt{6}-\sqrt{2}}{4} \quad,\quad \cos\alpha = -\frac{\sqrt{2}+\sqrt{6}}{4}$
b. $\frac{24}{25}$
c. $0$


7
a. $1$ b. $0$ c. $0$ d. $\frac{\cos(2\alpha)}{2}$


8

$\displaystyle \frac{10}{\sqrt{3}}$



9

$\displaystyle\frac{\sqrt{2}+\sqrt{3}}{2}$



10

Ja.



11

$\displaystyle \beta = \frac{\pi}{3} \quad,\quad A = \frac{8\sqrt{3}}{3}\quad,\quad C = \frac{4\sqrt{3}}{3}$



12

$\displaystyle 20\sqrt{3}$



13

$\displaystyle 2\sin\left(54^\circ\right) = \frac{\sin\left(108^\circ\right)}{\sin\left(36^\circ\right)}$



14
a. $x = \frac{\pi}{6}+2k\pi \,\vee\, x=\frac{5\pi}{6}+2k\pi \quad (k \in \mathbb{Z})$
b. $x = \frac{-\pi}{8}+k\frac{\pi}{2} \quad (k \in \mathbb{Z})$
c. $x = \frac{\pi}{12}+k\frac{\pi}{2} \,\vee\, x=\frac{\pi}{3}+k\pi \quad (k \in \mathbb{Z})$
d. $x = \frac{\pi}{2}+k\pi \,\vee\, x=2k\pi \,\vee\, x=\frac{2\pi}{3}+2k\pi\,\vee\, x=\frac{4\pi}{3}+2k\pi \quad (k \in \mathbb{Z})$


15
a. $\displaystyle \left\{\, -\frac{1}{2}\right\}$ b. $\displaystyle x= \sqrt{-\frac{1}{2}+\frac{\sqrt{13}}{6}} \vee x= -\sqrt{-\frac{1}{2}+\frac{\sqrt{13}}{6}}$


16
a. $\displaystyle \left(2,\frac{\pi}{4}\right)$ c. $\displaystyle \left(\frac{1}{2},\frac{5\pi}{4}\right)$ e. $\displaystyle \left(5,\frac{3\pi}{2}\right)$
b. $\displaystyle \left(3,\frac{\pi}{6}\right)$ d. $\displaystyle \left(2\sqrt{2},\frac{5\pi}{6}\right)$ f. $\displaystyle \left(2,\frac{2\pi}{3}\right)$


17
a. $\displaystyle \left(-\frac{\sqrt{2}}{2},-\sqrt{\frac{3}{2}}\right)$ b. $\displaystyle \left(3,-\sqrt{3}\right)$ c. $\displaystyle \left(7,0\right)$


18

20
a. $ z=2(\cos(\frac{\pi}{2})+i\cdot\sin(\frac{\pi}{2}))$ c. $z= \sqrt{13}(\cos(\theta)+i\cdot\sin(\theta))$ e. $z= cos(\frac{3\pi}{2})+i\cdot\sin(\frac{3\pi}{2})$ g. $z= cos(\frac{3\pi}{2})+i\cdot\sin(\frac{3\pi}{2})$
b. $z=\sqrt{2}(cos(\frac{7\pi}{4})+i\cdot\sin(\frac{7\pi}{4}))$ d. $z= \sqrt{26}(\cos(\theta)+i\cdot\sin(\theta))$ f. $z= 10(\cos(\theta)+i\cdot\sin(\theta))$ h. $z= \frac{2\sqrt{5}}{5}(\cos(\theta)+i\cdot\sin(\theta))$


21
a. $z_0=\cos(\frac{\pi}{4})+i\cdot\sin(\frac{\pi}{4}) \quad,\quad z_1=\cos(\frac{5\pi}{4})+i\cdot\sin(\frac{5\pi}{4})$
b. $z_0=\cos(0)+i\cdot\sin(0) \quad,\quad z_1=\cos(\frac{2\pi}{3})+i\cdot\sin(\frac{2\pi}{3}) \quad,\quad z_2=\cos(\frac{4\pi}{3})+i\cdot\sin(\frac{4\pi}{3})$
c. $z_0=2((\cos(\frac{\pi}{4})+i\cdot\sin(\frac{\pi}{4})) \quad,\quad z_1=2(\cos(\frac{3\pi}{4})+i\cdot\sin(\frac{3\pi}{4})) \quad,\quad z_2=2(\cos(\frac{5\pi}{4})+i\cdot\sin(\frac{5\pi}{4})) \quad,\quad z_3=2(\cos(\frac{7\pi}{4})+i\cdot\sin(\frac{7\pi}{4}))$
d. $z_0=2((\cos(0)+i\cdot\sin(0)) \quad,\quad z_1=2(\cos(\frac{\pi}{3})+i\cdot\sin(\frac{\pi}{3})) \quad,\quad z_2=2(\cos(\frac{2\pi}{3})+i\cdot\sin(\frac{2\pi}{3})) \quad,\quad z_3=2(\cos(\pi)+i\cdot\sin(\pi)) \quad,\quad z_4=2(\cos(\frac{4\pi}{3})+i\cdot\sin(\frac{4\pi}{3})) \quad,\quad z_5=2(\cos(\frac{5\pi}{3})+i\cdot\sin(\frac{5\pi}{3}))$